Expectation-maximization analysis of spatial time series
نویسندگان
چکیده
منابع مشابه
Expectation-maximization analysis of spatial time series
Expectation maximization (EM) is used to estimate the parameters of a Gaussian Mixture Model for spatial time series data. The method is presented as an alternative and complement to Empirical Orthogonal Function (EOF) analysis. The resulting weights, associating time points with component distributions, are used to distinguish physical regimes. The method is applied to equatorial Pacific sea s...
متن کاملa time-series analysis of the demand for life insurance in iran
با توجه به تجزیه و تحلیل داده ها ما دریافتیم که سطح درامد و تعداد نمایندگیها باتقاضای بیمه عمر رابطه مستقیم دارند و نرخ بهره و بار تکفل با تقاضای بیمه عمر رابطه عکس دارند
Expectation-based scan statistics for monitoring spatial time series data
We consider the simultaneous monitoring of a large number of spatially localized time series in order to detect emerging spatial patterns. For example, in disease surveillance, we detect emerging outbreaks by monitoring electronically available public health data, e.g. aggregate daily counts of Emergency Department visits. We propose a two-step approach based on the expectation-based scan stati...
متن کاملExpectation Maximization
The Expectation Maximization (EM) algorithm [1, 2] is one of the most widely used algorithms in statistics. Suppose we are given some observed data X and a model family parametrized by θ, and would like to find the θ which maximizes p(X |θ), i.e. the maximum likelihood estimator. The basic idea of EM is actually quite simple: when direct maximization of p(X |θ) is complicated we can augment the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinear Processes in Geophysics
سال: 2007
ISSN: 1607-7946
DOI: 10.5194/npg-14-73-2007